Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Mol Biol Evol ; 40(6)2023 06 01.
Article in English | MEDLINE | ID: covidwho-20235458

ABSTRACT

Despite its increasing role in the understanding of infectious disease transmission at the applied and theoretical levels, phylodynamics lacks a well-defined notion of ideal data and optimal sampling. We introduce a method to visualize and quantify the relative impact of pathogen genome sequence and sampling times-two fundamental sources of data for phylodynamics under birth-death-sampling models-to understand how each drives phylodynamic inference. Applying our method to simulated data and real-world SARS-CoV-2 and H1N1 Influenza data, we use this insight to elucidate fundamental trade-offs and guidelines for phylodynamic analyses to draw the most from sequence data. Phylodynamics promises to be a staple of future responses to infectious disease threats globally. Continuing research into the inherent requirements and trade-offs of phylodynamic data and inference will help ensure phylodynamic tools are wielded in ever more targeted and efficient ways.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Phylogeny , SARS-CoV-2/genetics
2.
Stat Sci ; 37(2): 162-182, 2022 May.
Article in English | MEDLINE | ID: covidwho-2021407

ABSTRACT

Genomic surveillance of SARS-CoV-2 has been instrumental in tracking the spread and evolution of the virus during the pandemic. The availability of SARS-CoV-2 molecular sequences isolated from infected individuals, coupled with phylodynamic methods, have provided insights into the origin of the virus, its evolutionary rate, the timing of introductions, the patterns of transmission, and the rise of novel variants that have spread through populations. Despite enormous global efforts of governments, laboratories, and researchers to collect and sequence molecular data, many challenges remain in analyzing and interpreting the data collected. Here, we describe the models and methods currently used to monitor the spread of SARS-CoV-2, discuss long-standing and new statistical challenges, and propose a method for tracking the rise of novel variants during the epidemic.

3.
Mol Biol Evol ; 39(8)2022 08 03.
Article in English | MEDLINE | ID: covidwho-1931872

ABSTRACT

The ongoing global pandemic has sharply increased the amount of data available to researchers in epidemiology and public health. Unfortunately, few existing analysis tools are capable of exploiting all of the information contained in a pandemic-scale data set, resulting in missed opportunities for improved surveillance and contact tracing. In this paper, we develop the variational Bayesian skyline (VBSKY), a method for fitting Bayesian phylodynamic models to very large pathogen genetic data sets. By combining recent advances in phylodynamic modeling, scalable Bayesian inference and differentiable programming, along with a few tailored heuristics, VBSKY is capable of analyzing thousands of genomes in a few minutes, providing accurate estimates of epidemiologically relevant quantities such as the effective reproduction number and overall sampling effort through time. We illustrate the utility of our method by performing a rapid analysis of a large number of SARS-CoV-2 genomes, and demonstrate that the resulting estimates closely track those derived from alternative sources of public health data.


Subject(s)
COVID-19 , Pandemics , Bayes Theorem , COVID-19/epidemiology , Humans , SARS-CoV-2/genetics
4.
Virus Evol ; 8(1): veac045, 2022.
Article in English | MEDLINE | ID: covidwho-1915853

ABSTRACT

Phylodynamics requires an interdisciplinary understanding of phylogenetics, epidemiology, and statistical inference. It has also experienced more intense application than ever before amid the SARS-CoV-2 pandemic. In light of this, we present a review of phylodynamic models beginning with foundational models and assumptions. Our target audience is public health researchers, epidemiologists, and biologists seeking a working knowledge of the links between epidemiology, evolutionary models, and resulting epidemiological inference. We discuss the assumptions linking evolutionary models of pathogen population size to epidemiological models of the infected population size. We then describe statistical inference for phylodynamic models and list how output parameters can be rearranged for epidemiological interpretation. We go on to cover more sophisticated models and finish by highlighting future directions.

5.
Chaos Solitons Fractals ; 156: 111812, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1729618

ABSTRACT

Recent outbreaks of novel infectious diseases (e.g., COVID-19, H2N3) have highlighted the threat of pathogen transmission, and vaccination offers a necessary tool to relieve illness. However, vaccine efficacy is one of the barriers to eradicating the epidemic. Intuitively, vaccine efficacy is closely related to age structures, and the distribution of vaccine efficacy usually obeys a Gaussian distribution, such as with H3N2 and influenza A and B. Based on this fact, in this paper, we study the effect of vaccine efficacy on disease spread by considering different age structures and extending the traditional susceptible-infected-recovery/vaccinator(SIR/V) model with two stages to three stages, which includes the decision-making stage, epidemic stage, and birth-death stage. Extensive numerical simulations show that our model generates a higher vaccination level compared with the case of complete vaccine efficacy because the vaccinated individuals in our model can form small and numerous clusters slower than that of complete vaccine efficacy. In addition, priority vaccination for the elderly is conducive to halting the epidemic when facing population ageing. Our work is expected to provide valuable information for decision-making and the design of more effective disease control strategies.

6.
Methods in Ecology and Evolution ; 12(8):1498-1507, 2021.
Article in English | Web of Science | ID: covidwho-1706798

ABSTRACT

1. Phylodynamic models use pathogen genome sequence data to infer epidemiological dynamics. With the increasing genomic surveillance of pathogens, especially during the SARS-CoV-2 pandemic, new practical questions about their use are emerging. 2. One such question focuses on the inclusion of un-sequenced case occurrence data alongside sequenced data to improve phylodynamic analyses. This approach can be particularly valuable if sequencing efforts vary over time. 3. Using simulations, we demonstrate that birth-death phylodynamic models can employ occurrence data to eliminate bias in estimates of the basic reproductive number due to misspecification of the sampling process. In contrast, the coalescent exponential model is robust to such sampling biases, but in the absence of a sampling model it cannot exploit occurrence data. Subsequent analysis of the SARS-CoV-2 epidemic in the northwest USA supports these results. 4. We conclude that occurrence data are a valuable source of information in combination with birth-death models. These data should be used to bolster phylodynamic analyses of infectious diseases and other rapidly spreading species in the future.

7.
Virus Evol ; 7(2): veab073, 2021.
Article in English | MEDLINE | ID: covidwho-1467408

ABSTRACT

The fitness of a pathogen is a composite phenotype determined by many different factors influencing growth rates both within and between hosts. Determining what factors shape fitness at the host population-level is especially challenging because both intrinsic factors like pathogen genetics and extrinsic factors such as host behavior influence between-host transmission potential. This challenge has been highlighted by controversy surrounding the population-level fitness effects of mutations in the SARS-CoV-2 genome and their relative importance when compared against non-genetic factors shaping transmission dynamics. Building upon phylodynamic birth-death models, we develop a new framework to learn how hundreds of genetic and non-genetic factors have shaped the fitness of SARS-CoV-2. We estimate the fitness effects of all amino acid variants and several structural variants that have circulated in the United States between February 2020 and March 2021 from viral phylogenies. We also estimate how much fitness variation among pathogen lineages is attributable to genetic versus non-genetic factors such as spatial heterogeneity in transmission rates. Before September 2020, most fitness variation between lineages can be explained by background spatial heterogeneity in transmission rates across geographic regions. Starting in late 2020, genetic variation in fitness increased dramatically with the emergence of several new lineages including B.1.1.7, B.1.427, B.1.429 and B.1.526. Our analysis also indicates that genetic variants in less well-explored genomic regions outside of Spike may be contributing significantly to overall fitness variation in the viral population.

8.
Viruses ; 13(1)2021 Jan 08.
Article in English | MEDLINE | ID: covidwho-1016259

ABSTRACT

Phylodynamic inference is a pivotal tool in understanding transmission dynamics of viral outbreaks. These analyses are strongly guided by the input of an epidemiological model as well as sequence data that must contain sufficient intersequence variability in order to be informative. These criteria, however, may not be met during the early stages of an outbreak. Here we investigate the impact of low diversity sequence data on phylodynamic inference using the birth-death and coalescent exponential models. Through our simulation study, estimating the molecular evolutionary rate required enough sequence diversity and is an essential first step for any phylodynamic inference. Following this, the birth-death model outperforms the coalescent exponential model in estimating epidemiological parameters, when faced with low diversity sequence data due to explicitly exploiting the sampling times. In contrast, the coalescent model requires additional samples and therefore variability in sequence data before accurate estimates can be obtained. These findings were also supported through our empirical data analyses of an Australian and a New Zealand cluster outbreaks of SARS-CoV-2. Overall, the birth-death model is more robust when applied to datasets with low sequence diversity given sampling is specified and this should be considered for future viral outbreak investigations.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/genetics , Australia/epidemiology , Bayes Theorem , COVID-19/transmission , Computer Simulation , Evolution, Molecular , Humans , Models, Statistical , New Zealand/epidemiology , Pandemics , Phylogeny , SARS-CoV-2/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL